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We propose a new type of waveforms in two-dimensional �2D� and three-dimensional �3D� discrete media-
multilegged extended nonlinear structures �ENSs�, built as arrays of lattice solitons �tiles and stones, in the 2D
and 3D cases, respectively�. We study the stability of the tiles and stones analytically, and then extend them
numerically to complete ENS forms for both 2D and 3D lattices, aiming to single out stable ENSs. The
predicted patterns can be realized in Bose-Einstein condensates trapped in deep optical lattices, crystals built of
microresonators, and 2D photonic crystals. In the latter case, the patterns provide for a technique for writing
reconfigurable virtual partitions in multipurpose photonic devices.
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Introduction and setup. Studies of dynamics in discrete
media and their continuum periodically modulated counter-
parts demonstrate very rapid progress in diverse contexts �1�,
such as optics of waveguide arrays and photorefractive crys-
tals �2�, Bose-Einstein condensates �BECs� in optical lattices
�3�, the denaturation of the DNA double-strand �4�, and oth-
ers. These efforts have resulted in the prediction and creation
of a variety of novel nonlinear structures, such as discrete
dipole �5�, quadrupole �6�, necklace �7�, and other multipulse
or multipole localized patterns �8,9�, discrete
vortices �10�, ring solitons �11�, and others �12�.

Experiments aimed at the creation of discrete-soliton
states are actually performed in continuum media, with
strong material �2� or virtual �photonic� �2–12� lattices built
into them. It has been demonstrated by comparison of the
experimental results with numerical simulations of the dis-
crete models, and also by dint of analysis based on the
Wannier-function expansion of continuous models with
strong lattices �13�, that, in all physically relevant cases, the
abovementioned experimental settings are well approximated
by the appropriate discrete models.

The present work is motivated by the abovementioned
achievements and recent developments in studies of X
waves, which are quasilinear extended structures generated
in three �14� and two �15� dimensions �3D and 2D�, and even
in quasidiscrete �16� media. X waves arise when the second-
order differential operator in the corresponding wave equa-
tion is �effectively �17�� sign indefinite �a D’Alembertian
instead of the Laplacian�.

In this paper, we are dealing with the sign-definite discrete
Laplacian �the sign indefiniteness in the discrete case can be
introduced by the well-known staggering transformation �1�,
applied along one coordinate only�. Instead of emulating
continuous wave equations supporting X waves in the lattice
medium, our aim is to construct stable extended nonlinear
structures �ENSs� in discrete media. By their nature, ENSs
are partly delocalized, ranging from a few to infinitely many
sites. An essential difference between the quasilinear X
waves in continua and the lattice ENSs reported below is that
the latter are strongly nonlinear structures, built as arrays of
individual lattice solitons �“tiles”�; in that sense, they

somewhat resemble weakly localized hypersolitons �18� and
supervortices �8�, constructed as finite ensembles of indi-
vidual solitons. We initialize our considerations in a purely
nonlinear �anticontinuum �AC�� limit, at zero value of lat-
tice’s linear intersite coupling, �=0, and then extend the
analysis up to a finite value of � at which the respective
structure becomes unstable �we report patterns that are con-
tinuable, starting from the AC limit; of course, at �=0, one
may construct arbitrary states that will not continue to �
�0�. Our analysis presents a variety of thus found stable
ENS species, including X, Y, and Z waves and some others,
each being stable in a finite interval of values of �. These
patterns may definitely be of interest to applications in both
nonlinear-optical and matter-wave contexts �as discussed at
the end of this paper�. Especially promising may be a possi-
bility to use the ENSs for the creation of reconfigurable vir-
tual partitions in photonic-crystal �PC� and PC-fiber multi-
servers. We also note that, while stable 1D patterns in 2D
continuous nonlinear models �and their interactions with 2D
objects� were considered before �19�, this work presents the
first examples of stable 1D strings in 3D media.

We consider the ubiquitous discrete nonlinear
Schrödinger �DNLS� equation

iu̇n = − ���2u�n − �un�2un, �1�

where un is a complex amplitude of the electromagnetic
wave in an optical waveguide array �in the 2D case� �2,20�,
or the BEC wave function at nodes of a 2D or 3D optical
lattice �21,13�, n being the vectorial lattice index, �2 the
standard discrete Laplacian, and u̇n the derivative with re-
spect to the evolution variable, i.e., the transmission distance
in optical arrays, or t in the BEC model �or in a crystal built
of microresonators �22��.

The analysis will start with presenting basic types of
“tiles” of which the ENSs are to be initially composed in the
AC limit �=0. Then, we will numerically extend these com-
positions into full ENS solutions for ��0, and select stable
ones among them, in the 2D and 3D cases.

Analytical results. We look for solutions to Eq. �1� as
un=exp�i�t��n, with �n obeying f��n ,�����n−��2�n
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− ��n�2�n=0. Perturbation of Eq. �1� around these solutions
leads to the linearization operator

Hn
��� = �� − 2��n�2 − �n

2

− ��n
*�2 � − 2��n�2

� − ��2�1 0

0 1
� .

By rescaling, we fix ��1, while � is kept as a free
parameter.

For �=0, stationary solutions are un=rei�n, where real am-

FIG. 1. �Color online� A family of single-leg patterns in the 2D
model �configuration 1�. The top left and right panels show, respec-
tively, the norm and the largest instability growth rate vs �. The
contour plots in the middle panels display the stationary solutions
for �=0.05 �stable� and �=0.1 �unstable�. The spectral planes ��r,
�i� of the eigenvalues for these solutions are presented in the bot-
tom panels.

FIG. 2. �Color online� Same as in Fig. 1 but for configurations
2a �top three panels�. The bottom panel presents the numerically
obtained linear stability eigenvalues of tiles paving these patterns
versus the analytical prediction �solid and dashed lines, respec-
tively�. The configurations are shown in the second row for
�=0.15 �left� and 0.25 �right�, and their corresponding stability is
shown in the third row.

FIG. 3. �Color online� Identical as the previous figure, but for
the configuration 2b.

FIG. 4. �Color online� Same as the previous two figures, but for
the configuration 2c. The second row panels show the solutions and
the third row panels the stability for �=0.05 �left� and �=0.2 �right�.
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plitude r is 0 or 	� and �n are arbitrary phase constants.
To continue the solutions to ��0, a set of Lyapunov-
Schmidt conditions need to be satisfied �23�, viz., the projec-
tion of zero modes Hn

�0� onto the system of stationary equa-
tions should be null, which leads to a solvability condition at
each “AC-filled” site �one with r�0 in the AC limit�,
gn�� ,����i� /2��e−i�n�2�n−ei�n��2�*�n�=0. Eigenvalues �
of the Jacobian, Mij ��gi /�� j, are related, at leading order
in �, to eigenvalues ��� of the linearization around the sta-
tionary solution by �= ±	2�.We use this relation, alongside
a perturbative expansion of the solution �n=�n

�0�+��n
�1�+¯,

to derive leading-order bifurcation conditions for ENSs and
find the corresponding linear-stability eigenvalues for non-
zero coupling.

ENSs in the 2D case can be categorized by the number of
their “legs” �i.e., the number of quasi-1D strings of which it
is composed�. Simplest is the one-leg structure assembled of
two- or three-site tiles, to which 1D stability results can be
applied �23�. The respective Jacobian is

Mi,j = 
cos�� j+1 − � j� + cos�� j−1 − � j�, i = j ,

− cos�� j − �i�, i = j ± 1,

0, �i − j� 	 2,

from which conclusions for the stability of the one-leg ENSs
may be drawn. In particular, a necessary �but not sufficient�
stability condition is that the phase shift between adjacent
sites must be 
 �23,24�. For the two-site tile satisfying this
condition, the eigenvalues are imaginary �neutrally stable�
�23�, �=	2�= ±2	�i, while for its three-site counterpart,
�+1,−1, +1�, they are �= ±	2�i and �= ±	6�i. The �single-

leg� chain assembled of these tiles is �. . . ,−1 , +1 ,−1, +1,
−1, . . . �, is hereafter termed configuration 1.

Proceeding to two-tile configurations allows us to exam-
ine more complex �in particular, X and Y shaped� ENSs in
2D. The X configurations can be built of square- or cross-
shaped tiles, which, at �=0, are

� 1 0 − 1

0 0 0

− 1 0 1
� and �1 0 1

0 − 1 0

1 0 1
� . �2�

The latter one is not considered further, as it gives rise to an
unstable eigenvalue pair, �= ±2� �despite the fact that this
configuration meets the abovementioned necessary stability
criterion, having the 
 phase shift between adjacent non-
empty sites�. The former tile has a pair of �= ±2	2�i, and
double �= ±2�i, hence stable X configurations �to be called
2a� can be constructed at finite � as arrays of such tiles with
alternating signs.

Other two-leg configurations are Y shaped and “skew-X”
ones, composed, respectively, of

�1 0 − 1

0 0 0

0 0 1
� and �0 − 1 1

0 1 0

1 − 1 0
� . �3�

Both these tiles are stable, with �= ±	2�i and �= ±	6�i
for the former, and �= ±0.874	�i, �= ±1.663	�i,
�= ±2.882	�i, and �= ±2.690	�i for the latter. Stable sign-
alternate ENSs assembled of them are termed 2b and 2c,
respectively.

FIG. 5. �Color online� Same as the previous figures, but for
configurations 3a. The second row panels show the solutions and
the third row panels the stability for �=0.05 �left� and 0.1 �right�.

FIG. 6. �Color online� Identical to the previous figure, but for
the configuration 3b.
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The following tiles �generally, denser filled than their
counterparts �3�� were shown by our analysis to be stable
building blocks for three-leg ENSs,

� 1 − 1 1

− 1 1 − 1

1 − 1 1
� and � 1 − 1 1

0 1 0

− 1 0 0
� . �4�

The former tile generates three pairs of double eigenvalues
±	2�i, ±	6�i, and ±	8�i, and two pairs of single ones ±2	�i
and ±	12�i. The latter tile has a double eigenvalue ±	2�i
and a single one ±	8�i. Three-leg ENSs paved by these tiles
with alternating signs are called 3a and 3b, respectively. In
fact, the latter one is a Z-shaped array.

Finally, we consider two configurations as a proof-of-
principle of the extension of the ENS concept to the 3D
space. In particular, augmenting the first tile of Eq. �4� by
two −1 sites, adjacent to middle 1 along the third direction,
we produce a “stone.” The stone is stable, with single eigen-
values �= ±1.248	�i, �= ±2	�i, �= ±	6�i, �= ±2.763	�i
and �= ±3.848	�i, and double and triple ones, �= ±	8�i and
�= ±	2�i, respectively. The stones will be used to build a
stable 3D pattern �again, with sign alternations�, called 4a in
our nomenclature.

The simplest stable stone is a “diamond” consisting of six
AC-filled sites surrounding, as nearest neighbors, an empty

one. Although configurations of this type �including ones sat-
isfying the above necessary stability criterion of adjacently
excited sites with 
-phase difference� may be unstable �12�,
our method allows to identify a stable one. The latter carries
a phase distribution that corresponds to a quadrupole in the
plane, with phases 
 /2 or 3
 /2 lent to the two out-of-plane
sites. This stone has triple and single eigenvalues, �= ±2�i
and �= ±4�i, respectively, and a higher-order one, at O��2�,
which is stable too. A stable 3D configuration, labeled 4b, is
assembled of the “diamonds” with alternating signs.

Numerical results. In Figs. 1–8 we present, in a unified
format, results of the numerical continuation of select stable
�up to respective destabilization points� ENSs, starting from
the AC limit. In Fig. 1, configuration 1 �a straight chain of
sign-alternating tiles in 2D� is shown. Its norm N=n ��n�2
and maximum instability growth rate are shown, as a func-
tion of the intersite coupling, �, in the top left and right
panels. In the 21�21 lattice, the chain is unstable at
�	0.074 �we also repeated the reported computations with
larger lattices up to 41�41; the critical values of � change
only by 0.001 or less�. The middle and bottom panels display
typical examples of stable and unstable configurations, and
the spectral plane ��r ,�i� of their numerically found �in�sta-
bility eigenvalues, ���r+ i�i, the instability being intro-
duced by �r�0. The results are reported herein for Dirichlet
boundary conditions �BCs�. The role of BCs is relatively

FIG. 7. �Color online� Same as above, but for
3D configuration 4a. The configurations and sta-
bility of the second and third row, respectively,
are for �=0.03 �left� and �=0.1 �right�.
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weak �i.e., of higher order� in the Dirichlet and
Neumann case. The periodic BC situation depends on the
nature of the BC-imposed neighbors of the boundary sites
�and their relative phase—see the discussion above�.

Figures 2–4 present three different varieties of the two-leg
configurations: 2a �X waves, Fig. 2�, 2b �Y waves, Fig. 3�
and 2c �skewed X waves, Fig. 4�. Numerically computed
stability eigenvalues of the corresponding tiles, i.e., the first
one in Eq. �2� and both tiles in Eq. �3�, are given by solid
blue lines for comparison with the analytical predictions of
the previous section �dashed red lines�, showing good agree-
ment. Configurations 2a, 2b, and 2c are unstable at
�	0.202, �	0.206, and �	0.068, respectively.

Similarly, Figs. 5 and 6 show two three-leg configura-
tions, respectively, 3a and 3b and their stability. These
configurations are found to be unstable at �	0.053 and �
	0.075,
respectively, in our computations.

Finally, Figs. 7 and 8 show the continuation to ��0 of 3D
configurations 4a and 4b, which are stable, respectively, for
��0.043 and ��0.075. Note that the corresponding numeri-
cally computed eigenvalues �for the respective stones� again
agree well with the analytical predictions.

Conclusion. We have presented a systematic approach to-
wards constructing a variety of single- and multilegged ex-

tended nonlinear structures �ENSs� in 2D and 3D lattices.
They are composed of building blocks, namely, tiles �2D� or
stones �3D� with alternating signs, that are originally defined
in the anticontinuum limit �the sign alternation is a necessary,
but not sufficient, stability condition�. Stable ENSs at small �
were selected analytically, and their stability intervals were
revealed by numerical continuation in �. Examination of
nonlinear evolution of unstable patterns will be presented
elsewhere.

One-legged ENSs have already been created in photore-
fractive crystals �9� through the launching of a stripe beam at
various angles. Natural generalizations of these into the ENS
patterns reported herein can be realized through the launch of
sets of such beams. Furthermore, ENSs can be implemented
in experiments with BECs trapped in deep optical lattices,
photonic crystals �PCs� and/or PC fibers, and crystals com-
posed of microresonators �MRs�. In particular, the ENSs of a
prescribed shape can be easily created by coupling a corre-
spondingly patterned set of laser beams into the PC. In MR
crystals, both 2D and 3D patterns can be created by exciting
polaritons in the respective set of MRs, illuminating them
with a laser source. In the BEC setting, a pattern can be
written by optically removing the condensate from lattice
sites that should be empty. Stable 2D ENSs can find appli-
cations as a technique for writing virtual partitions in
PC-based integrated devices.

FIG. 8. �Color online� Same as in the previous
figure but now for configuration 4b. In this case,
the �green and yellow� out of plane sites have
phase �in the limit of �=0� 
 /2 and 3
 /2,
respectively.
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